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Abstract

This paper focuses on detecting parts in laser-scanned

data of a cluttered industrial scene. To achieve the goal,

we propose a robust object detection system based on seg-

mentation and matching, as well as an adaptive segmenta-

tion algorithm and an efficient pose extraction algorithm

based on correspondence filtering. We also propose an

overlapping-based criterion that exploits more information

of the original point cloud than the number-of-matching cri-

terion that only considers key-points. Experiments show

how each component works and the results demonstrate the

performance of our system compared to the state of the art.

1. Introduction

As 3D Laser Scanning techniques become popular, di-

rectly detecting objects in the scanned point clouds has be-

come an immediate demand for applications such as scene

understanding and reconstruction. Particularly, detecting

industrial objects in a cluttered scene is an even more chal-

lenging problem, since such objects are often connected or

occluded by clutters of pipes, planes, etc.

There have been some detection systems e.g. matching-

based detection system, in which a target library (Fig. 1)

is necessary for performing template matching algorithms.

Works such as [8] show the potential of a matching-based

system, while in this paper we achieve substantially bet-

ter results by carefully examining the bottlenecks of [8] in

terms of the recall rate.

Since matching between a small part with a large region

will waste much time in unnecessary comparisons and also

cause confusion, a segmentation step is necessary. The sim-

plest idea is to segment the cloud based on Euclidean dis-

tance. However, in complex industrial scenes, if the tol-

erance of clustering is large, several parts might stay con-

nected in one cluster. On the other hand, if the tolerance is

small, certain part can be broken in several pieces. To solve

this problem, we propose an adaptive segmentation method

that generates clusters with relatively small size for match-

Figure 1. The CAD models of the part templates, which are con-

verted into point clouds by a virtual scanner in pre-processing.

Figure 2. Matching a single part to a big cluster.

ing while the continuity of a single part is retained.

Another key part for detection-by-matching approaches

is matching. Instead of the feature extraction and descrip-

tor computation, we focus on the correspondence selec-

tion/outlier removal algorithm, which could otherwise be

a bottleneck in the whole detection system. In fact, the new

outlier removal algorithm largely reduces the dependency

on the quality of descriptors.

RANSAC [5] is a widely used strategy in outlier re-

moval. However, traditional RANSAC is too general to re-

tain high efficiency. Instead, we found that many outliers

could be pruned in the early stage of matching, under var-

ious assumptions/constraints. For example, we could im-
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pose rigid-body constraint, where a rigid-body coefficient

is specified for different applications.

Finally, we explore the nature of a successful match-

ing by comparing two different evaluation criteria. Fig-

ure 2 shows one example of the matching result between

a single part to a big region using the proposed correspon-

dence selection algorithm with the overlapping score crite-

rion, which was impossible for the method in [8] within the

same time.

The novelty of this work includes proposing a robust de-

tection system based on segmentation and matching sup-

ported by the following new techniques:

1) An adaptive segmentation algorithm that could effi-

ciently segment the full point cloud into a hierarchy of can-

didates with proper size.

2) An efficient pose estimation algorithm based on corre-

spondence filtering with rigid-body constraint. The process

could be generalized to various constraints.

3) An overlapping score method used as the evaluation

and alignment criteria.

2. Related Work

Various point cloud processing systems with different

goals and/or data types have been proposed in recent years.

For example, [13] describes an object map acquisition sys-

tem for household environments. [1] proposes an object

(mainly cars) detection system for urban area with bottom-

up and top-down descriptors. [8] presents a matching-based

framework for detecting parts in cluttered industrial scenes.

Focusing on the similar datasets, we achieve substantially

better results compared to the system described in [8].

In order to reduce the size of problem, segmentation

techniques are often employed in 3D point cloud pre-

processing. Many methods are based on Graph-cut. For

example, [11] uses a min-cut algorithm for the outdoor ur-

ban scan. [12] presents a set of segmentation methods for

different types of point clouds. They also proposed an eval-

uation metric that could quantify the performance of seg-

mentation algorithms. In this paper, we aim to decompose

the point clouds into meaningful regions and separate the

parts from each other while avoiding breaking one part into

multiple pieces, with an adaptive segmentation scheme.

The extensively applied strategy, feature-based match-

ing, performs the feature extraction and then computes de-

scriptors in each of the extracted key-points. For exam-

ple, [6] applies the Maxima of Principal Curvature (MoPC)

feature detector and the 3D Self-Similarity (3D-SSIM) de-

scriptors. [1] obtains the key-points by placing a 3D grid

and computes the Spin Image descriptor [14]. A benchmark

for feature detection and descriptor methods could be found

in [10]. In this paper, however, we emphasize on another

perspective of matching i.e. correspondence selection and

pose evaluation.

Figure 3. The pipeline of the detection system.

There are several complex correspondence selection

schemes, most of which are originated from RANSAC [5].

For example, Maximum Likelihood Estimation by Sample

Consensus (MLESAC) scheme proposed in [3] is also ap-

plied in [2] for image matching. [4] proposes the Progres-

sive Sample Consensus (PROSAC) that reduces the compu-

tation with classification score. [7] presents a randomized

model verification strategy for RANSAC, based on Wald’s

theory of sequential decision making. A comprehensive

survey of the RANSAC techniques could be found in [9].

We do not apply a randomized scheme, but instead take ad-

vantage of prior knowledge to prune the outliers during the

selection procedure.

For the whole system, [18] also propose a segmentation

and matching scheme to deal with cluttered scenes, but it’s

fully based on models instead of point clouds. Since models

could be converted to point clouds through a virtual scan-

ner conveniently but not vice versa, and the scanned data

are usually in the point cloud format, we provide a viable

solution to process 3D data, especially those without edge

information.

3. System Overview

The pipeline of the system, basically composed of four

stages i.e. classification, segmentation, feature description

and matching, is illustrated in Fig. 3.

Given a point cloud of a large scene, we divide all points

into two categories i.e. backbone and part. The relationship

between the two are like the background and foreground in

2D image segmentation. The goal of classification is thus

classifying all points into these two large categories.

When classification is done, large connected components

of backbone points are removed from the original point
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cloud and the residual points are considered as the candi-

date part point cloud. The candidate point cloud is then

adaptively segmented into a set of candidate clusters.

In the matching stage, features are extracted using Max-

ima of Principal Curvature (MoPC) detector and then, the

3D Self-Similarity descriptors [6] are computed on the de-

tected features of both targets from the database and the can-

didate clusters generated in segmentation. Given a pair of

candidate cluster and database template, the initial feature

matches are obtained with the Nearest Neighbor Distance

Ratio (NNDR) criterion. Then we try to extract the best

alignment between the candidate and database templates.

We estimate a series of candidate poses based on different

subsets of the initial correspondences induced by the top-

rated seed correspondences. Matching scores are evaluated

based on the overlapping ratio between the candidate and

the transformed database templates, and the template with

the best score higher than a confidence threshold is consid-

ered as the detection result for the candidate cluster.

From another perspective, the classification and feature

description could be viewed as the preparation stage for seg-

mentation and matching, respectively. Among all the mod-

ules, the adaptive segmentation and the best pose extraction

in matching are the emphasis of this paper.

4. Backbone Classification

Typically, the backbone structures contain large planes

(e.g. ground and walls), pipes and edges (the intersection

of two planes), which intrinsically differ from each other.

Therefore, in backbone classification, similar to [8], five

basic categories are defined, including four backbone cat-

egories i.e. plane, pipe, edge and thin-pipe, as well as the

remaining category, known as the part category since parts

are supposed to be in this category.

Four two-class linear SVM classifiers [16] are trained be-

tween the backbone categories and the part category. To

train each of the classifiers, we manually label 250k points

with one of the five categories (≈ 50k each), and compute

the 33-dimensional FPFH descriptor [15] on each of the

points. The positive examples for classifier of category A

are the 50k descriptors of points labeled as category A, and

the negative examples are 50k descriptors selected from the

remaining 200k points labeled as other categories. In our

experiments, the training set comes from a different scene

point cloud to the test point cloud.

During testing, an FPFH descriptor is computed on each

point from the input cloud and is tested with the trained

SVM classifiers such that each point is assigned with four

labels (i.e. plane/non-plane, pipe/non-pipe, edge/non-edge,

thin-pipe/non-thin-pipe). Figure 4 shows an example of

backbone classification. Note that it’s possible that some

point has multiple positive labels (e.g. a point could be both

pipe and thin-pipe).

Figure 4. The backbone cloud. Points classified as plane / pipe

/ edge / thin-pipe are displayed in yellow / green / purple / light

green, respectively.

Figure 5. The process of adaptive segmentation.

5. Adaptive Segmentation

According to the labels, we are able to filter out the back-

bone points through the following subtraction process: we

perform an Euclidean clustering for points within each of

the four backbone categories, and remove them from the

original cloud only if they belong to a sufficiently large clus-

ter (≥ 1000 points). In this way, we obtain the residual

point cloud. In [8], the residual point cloud is segmented by

a one-time Euclidean clustering. However, there are some

problems in the segmentation results:

1) Big clusters can still exist after segmentation.

2) There are many parts in such big clusters, however,

it’s difficult for the matching stage to handle clusters that

are too big.

As the solution, we propose the following adaptive seg-

mentation procedure (Fig. 5). Instead of fixing the tolerance

in Euclidean clustering, we iteratively decrease the toler-

ance for large clusters so that each cluster contains no more

than a fixed number of points. In other words, only large

clusters will be re-segmented. This process generates a tree

of clusters. The tolerance is smaller for deeper layers, and

the leaf nodes are the final result of segmentation.

Although parts that are close to each other could be con-

nected due to noise or incomplete removal of backbone

points, which can lead to wrong clustering by Euclidean

distance, we observe that in most cases these connections

would be cut off earlier than the connections among the

same objects, which ensures the feasibility of the algorithm.
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6. Feature Description

After segmentation, the point clouds are divided into a

series of clusters with comparable size as the template point

clouds scanned from the models in the database.

We apply the Maxima of Principal Curvature feature de-

tection algorithm [6] to extract the keypoints from each

point cloud, in order to reduce the number of descriptors

need to be examined in matching while keeping the salient

features.

Then, 3D Self-Similarity descriptors [6] are computed

on each of the keypoints. We use 5×5×5 = 125 dimensions

for the descriptor, and the similarity value is evaluated based

on normal and curvature differences. The features and de-

scriptors are precomputed and stored for database templates

in the offline processing, so we only need to compute those

for the segmented clusters in the online processing.

7. Matching and Pose Extraction

After the features with descriptors are extracted and

computed, we are able to estimate the pose transformation

between any two point clouds. The general idea is, instead

of extracting only the largest group of matches among dif-

ferent hypotheses that obey the rigid-body constraint, we

first get all possible rigid transformations among different

hypotheses of matches and then, evaluate the quality of

transformations (Eq. 6) and extract the best one (Eq. 7).

7.1. Correspondence Selection

The goal of correspondence selection is to select feasible

sets of correspondences from which possible transformation

hypotheses could be computed.

Formally, we define a correspondence between keypoint

x in point cloud X and keypoint y in point cloud Y as a

triple c = (x, y, f), where f is the confidence value.

Given a keypoint x, we are only interested in the

keypoint y1 that minimizes the difference of descriptors

||d(x) − d(y)||. Also, we need to ensure that it’s outstand-

ing enough to beat other candidates, thus the negative of

Nearest Neighbor Distance Ratio (NNDR) is used as the

confidence value, such that the higher the confidence value

is, the more outstanding the top correspondence is (Eq. 1).

f(c) = −
||d(x)− d(y1)||

||d(x)− d(y2)||
(1)

where y1 and y2 are the top two corresponding points in

Y that minimize ||d(x)− d(y)||.
Now, we can assign the set of initial correspondences

generated from the keypoints in X with sorted confidence

values, i.e. C0 = {ci; f(c1) ≥ f(c2) ≥ ... ≥ f(cn)}.

For any correspondence set C, we define the seed corre-

spondence of it as α(C), the correspondence with the high-

est confidence value (Eq. 2).

α(C) = t ∈ C(∀c ∈ C(f(t) ≥ f(c))) (2)

In the rare case that there are multiple correspondences

with the same confidence value as the highest, any one of

them could be the seed.

In the k-th hypothesis, we assume that the k-th corre-

spondence is correct, while the first to (k−1)-th correspon-

dences are wrong. Formally, we only consider the subset

C
(0)
k = {ci ∈ C0; i ≥ k}, and the remaining correspon-

dence with the highest confidence ck = α(C
(0)
k ) is the seed

correspondence.

Starting from ck, we can gradually add feasible corre-

spondences to the final correspondence set, denoted as Sk.

Initially we have S
(0)
k = ∅. Then, each round we add one

more seed to the final correspondence set:

S
(j+1)
k = S

(j)
k ∪ {α(C

(j)
k )} =

j⋃

l=0

{α(C
(l)
k )}. (3)

Meanwhile, we only preserve correspondences that obey

the rigid-body constraint, i.e. the rigid-body transformation

is distance-preserving (Eq. 4).

C
(j+1)
k = {c ∈ C

(j)
k \{α(C

(j)
k )};

∀s ∈ S
(j)
k (

1

γ
<

||x(c)− x(s)||

||y(c)− y(s)||
< γ)}

(4)

where γ is the rigid-ratio threshold, and for ideal rigid-

body γ = 1. Using the fact that the elements in C
(j)
k must

satisfy the constraint with elements in S
(j−1)
k , we can fur-

ther simplify the computation from O(n2) to O(n):

C
(j+1)
k = {c ∈ C

(j)
k \{α(C

(j)
k )};

1

γ
<

||x(c)− x(α(C
(j)
k ))||

||y(c)− y(α(C
(j)
k ))||

< γ}
(5)

This process could be carried on until C
(j)
k = ∅.

Based on each self-consistent correspondence set Sk, we

can estimate a transformation matrix Tk that minimize the

squared difference between the correspondences and nor-

malize Tk with the Gram-Schmidt process.

7.2. Evaluation Criteria

We define the overlapping score between the two point

clouds A and B, with overlapping threshold θ, as the pro-

portion of the points in A having at least one point in B in

its θ-neighborhood (Eq. 6) (Fig. 6).

Ω(A,B) =
|{x ∈ A; ∃y ∈ B(||x− y|| < θ}|

|A|
(6)
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(a) (b)

Figure 6. Illustration of overlapping score. (a) shows the alignment

of two point clouds and (b) highlights the overlapping area within

certain threshold. The overlapping score reflects the ratio between

the size of overlapping area and one of the original point clouds.

Note that in most cases Ω(A,B) 6= Ω(B,A). In im-

plementation, a kd-tree is built for both point clouds A

and B, such that the running time for each find-nearest-

neighbor operation is O(log(|A|)) or O(log(|B|)), thus the

time complexity for the routine is O(|A| · log(|B|) + |B| ·
log(|A|)).

Based on the overlapping score, we define the following

criteria (Eq. 7) for the best transformation extraction:

Tbest = argmax
Tk

(Ω(Tk × Pt, Pc)), (7)

where Pt is the template point cloud and Pc is the candi-

date cluster. That is, we transform the template point cloud

with the estimated transformations, compare them to the

candidate cluster, and extract the transformation that gener-

ates the largest overlapping score as the best transformation

between the pair Pt and Pc. The range of the Ω function is

[0, 1], and its value would reach 1 even if Pt is only a sub-

set of Pc, meaning that the partial matching is enabled. In

such cases, we would remove the overlapping part from Pc

and iteratively perform the matching on the remaining point

cloud until it’s small enough (e.g. less than 500 points).

Here are some insights why our evaluation criterion is

better than the traditional maximum-number-of-matching

criterion: the criterion ensures the nearly optimum solu-

tion under the final evaluation criterion of to what extent the

two point clouds are overlapping with each other, while not

consuming much more computation time. Also, it is a kind

of the quality control of matching at the final stage, mean-

ing that once a good transformation has been generated, it

would not be contaminated by other steps.

Moreover, this framework of 1) getting all possible trans-

formations, 2) evaluating overlapping scores and 3) extract-

ing best transformations based on overlapping scores could

be generalized to non-rigid pose estimation as well.

(a) (b)

Figure 7. Comparison of alignment result using (a) maximum

number of matching criterion and (b) overlapping score criterion.

The point clouds in (a) are misaligned.

8. Experiments

8.1. Rigid Ratio Threshold

The rigid ratio threshold γ, or the maximum distance ra-

tio between two selected correspondences, is an important

threshold that imposes the distance consistency during the

correspondence selection.

Generally speaking, the size of the final correspondence

set will decrease as the threshold decreases, while the accu-

racy of the correspondences will increase. If the threshold

is too tight, there will be too few correspondences to esti-

mate the transformation, while if the threshold is too loose,

the accuracy will decrease. We empirically optimize this

threshold and set γ = 1.08 for all the tests.

8.2. Number of Matching Attempts

Though best correspondences typically have the best

confidence values, we find that making more attempts ac-

tually does improve the results, since our evaluation mech-

anism, in most cases, ensures the monotonicity of perfor-

mance against the number of attempts, while only adding a

negligible increase in the computational complexity of the

method. In the following experiments, we try 50 different

hypotheses during best pose extraction.

8.3. Comparison of Evaluation Criteria

In this section, we perform the experiment based on the

parameters suggested in Section 8.1 and 8.2, i.e. rigid ra-

tio = 1.08, number of attempts = 50. The only variable is

the scoring method, i.e. matching score (number of inlying

matches after correspondence selection) proposed in [8] vs.

overlapping score proposed in this paper.

Here is an example to illustrate the difference (Fig. 7). If

we use the matching number as score, the result on the left

will be selected since it has more matches (143) than the

result on the right (108). However, if we apply the transfor-

mation computed from the two sets of matches, we’ll find

that the alignment on the left is worse than the one on the

right. In a word, the overlapping score uses a more direct

and final evaluation of the quality of alignment and thus

gives a better result.
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Figure 9. Comparison of segmentation / clustering methods. The

vertical axis represents the number of correct detections using dif-

ferent methods. The first column is adaptive segmentation, while

the remaining columns are segmentation with a fixed tolerance t.

8.4. Evaluation of Segmentation

We use a difficult scenario (Fig. 8) to compare the adap-

tive segmentation with fixed-tolerance segmentation.

For adaptive segmentation we use the following param-

eters: the initial tolerance τ0 = 0.03, decay coefficient

d = 0.9, and upper bound of cluster size N = 50000.

Except the segmentation method, the matching techniques

applied are exactly the same in this experiment.

Figure 8 shows the comparison results of a cluttered

scene between adaptive segmentation and fixed-tolerance

segmentation. The clusters obtained from adaptive segmen-

tation are more evenly distributed and properly segmented

without disconnecting single parts.

Figure 9 shows the number of correct detections by dif-

ferent methods. When we simply reduce the fixed tolerance

to break down the clusters, the detection rate doesn’t in-

crease as wished, but instead has a dramatically drop when

the tolerance is comparable to the precision of point cloud,

resulting in over-segmentation of parts. However, adaptive

segmentation avoids such situation by keeping parts from

being broken down when they’re already small enough.

8.5. Comparison with Existing System

In this section, we run our detection system on a large

industrial scene dataset containing over 15 million points.

Figure 10 presents the detection result, in which the point

clouds of the detected parts are replaced with the corre-

sponding templates. The pipe models are generated with

the method described in [17]. This result also demonstrates

the potential application of our detection system in the point

cloud modeling system. Table 1 summarizes the statistics

for the full industrial scene using our method versus the

method in [8]. Our method is significantly better in terms

of the recall rate. More results are shown in Fig. 11, con-

taining several pairs of original point cloud and the classifi-

cation and detection results.

Figure 10. Detection result in an industrial scene. The detected

parts are shown in purple and inside the bounding boxes.

9. Conclusion

We propose an improved framework for 3D object de-

tection based on segmentation and matching. The adap-

tive segmentation algorithm greatly reduces the burdens for

matching by limiting the size of clusters. Also, by apply-

ing the corresponding selection algorithm with the overlap-

ping score criterion, the point cloud matching module has

become robust enough that most pairs of well-segmented

clouds of the same category of objects can be matched prop-

erly. This means at least with some human interactions,

the parts could be correctly matched. Experimental results

show the robustness of our system on large-scale industrial

scenes and the potential application in scene reconstruction.
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Figure 11. Detection results by the proposed method. The left column are the original point clouds, while the right column are the

classification and detection results. The planes are shown in yellow, pipes shown in green, edges shown in light purple, and the detected

parts are shown in dark purple. Despite the presence of large number of pipes (1st/2nd row), planes (3rd row) and clutters (2nd/4th/5th

row), our system is capable of detecting all kinds targets ranging from flanges, hand wheels (2nd/4th row), tripods (3rd row) to large ladders

(5th row).
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